Solvatochromism of mesoionic iodo(1,3-dithiol-2-ylium-4-yl)phenolates

Lucian M. Birsa, Luliean V. Asaftei

Department of Organic Chemistry, Al.I. Cuza University of Iasi, Iasi, Romania

Received 23 March 2008; Accepted 26 March 2008; Published online 2 June 2008 © Springer-Verlag 2008

Abstract Novel mesoionic phenolates were synthesized *via* 4-hydroxyaryl-1,3-dithiolium salts and characterized spectroscopically by UV-Vis. The bathochromic effect induced by iodine substituents was investigated for several solvents. A negative solvatochromism was recorded for the intramolecular charge transfer absorption band.

Keywords Dithiocarbamates; Dithiolium salts; Mesoionic compounds; Charge transfer.

Introduction

Solvatochromic dyes have played an important role in the understanding of solvent polarity effects and are increasingly important as probes of complex biological systems [1–3]. The systems where a donor moiety is linked through a π - or σ -bonded bridge to the acceptor moiety received special interest [4]. A variety of acceptor units have been investigated with special attention paid to cationic systems, such as pyridinium and bipyridinium cations [5–7].

In this context, investigations of a series of 2-[2-(pyrrolidin-1-yl)-1,3-dithiol-2-ylium-4-yl]phenolates have shown that 1,3-dithiolium cations can also serve as acceptor moieties in intramolecular charge transfer complexes [8]. The above mesoionic compounds showed only a small negative solvatochromism $(-\Delta \lambda = 10-15 \text{ nm})$. Therefore, by varying the

Correspondence: Lucian M. Birsa, Department of Organic Chemistry, Al.I. Cuza University of Iasi, 700506 Iasi, Romania. E-mail: lbirsa@uaic.ro

nature of substituents, we decided to investigate the influence of both acceptor and donor moieties on the intramolecular charge transfer absorption band. Several mesoionic phenolates with different secondary amines (dimethylamino, diethylamino, piperidine, morpholine) at the 2-position of the 1,3-dithiol-2-ylium ring were synthesized and investigated spectroscopically by UV-Vis. Since the position of intramolecular charge transfer absorption band was not affected by the nature of secondary amine moiety we decided to introduce iodine substituents on the donor part of the mesoionic 2-(1,3-dithiol-2-ylium-4-yl)phenolates. This paper deals with the synthesis and UV-Vis behavior of new iodo substituted 2-(2-dialkylamino-1,3-dithiol-2-ylium-4-yl)-phenolates.

Results and discussion

Phenacyl N,N-dialkyldithiocarbamates $2\mathbf{a}-2\mathbf{f}$ have been prepared by reaction of ω -bromo-ketones $1\mathbf{a}-1\mathbf{c}$ with the corresponding N,N-dialkyldithiocarbamates (Scheme 1). 2-Bromo-1-(2-hydroxy-3-iodo-5-methylphenyl)butan-1-one ($1\mathbf{c}$) has been obtained by bromination of 1-(2-hydroxy-3-iodo-5-methylphenyl)butan-1-one [9] in glacial acetic acid as the solvent.

As previously reported, attempts to cyclize *N*,*N*-dialkyldithiocarbamates **2** using common cyclization agents according to literature [10–12], led to degradation of the substrates, often accompanied by loss of molecular iodine. Using a P₂O₅ – CH₃SO₃H (1:10) mixture as cyclization agent proved to be a

L. M. Birsa, L. V. Asaftei

i. R_2 C(S)S¯ Na⁺; ii. P_2 O₅ – CH₃SO₃H, 30 min., rt, CH₃COOCH₃, 70% HClO₄; iii. aq. NaHCO₃·

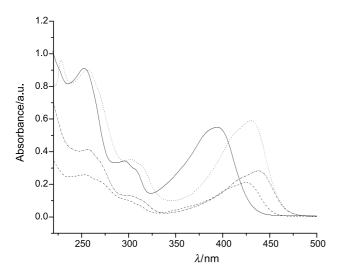
	<i>R</i>	R	R^1	R^2
а	CH ₃	CH ₃	Н	ı
b	C ₂ H ₅	C_2H_5	CH ₃	I
С	((CH ₂) ₅	CH ₃	I
d	(CH ₂) ₂ -	-O-(CH ₂) ₂	CH ₃	I
е		CH ₂) ₅	C_2H_5	CH ₃
f	(CH ₂) ₂ -	O-(CH ₂) ₂	C_2H_5	CH

Scheme 1

Scheme 2

proper way to obtain 1,3-dithiolium salts **3** as pure compounds and in high yields. Furthermore, we have found that the cyclocondensation takes place in high yields even at room temperature. Thus, a suspension of **2** in three parts of the "superacid" mixture was stirred at room temperature for 30 min to give a solution, which contained the corresponding 1,3-dithiolium cation. Addition of 70% perchloric acid and methyl acetate to this solution give perchlorates **3a–3f** as white crystalline products (Scheme 2). Treatment of these perchlorates with a saturated NaHCO₃ solution gives the corresponding phenolates **4a–4f** as yellow crystalline products, which show mesoionic character [13–15] (Scheme 1).

In a previous paper [8], the comparative study of UV-Vis absorption spectra of 2-, 3-, and 4-[2-(pyrrolidin-1-yl)-1,3-dithiol-2-ylium-4-yl]phenolates has shown that the yellow color of the above zwitterionic compounds is due to a charge transfer between electron-rich and electron-deficient regions of the molecules and not to the contribution of quinoid structures in the ground states (Scheme 2).


Investigations of UV-Vis absorption spectra of mesoionic phenolates 4a-4f confirm the previous findings. In comparison to the corresponding unsubstituted phenolates, the absorption spectra of 4a-4f reveal a new absorption band at 255 nm. Our initial assumptions placed the contribution of a quinoid structure to 2-[2-(pyrrolidin-1-yl)-1,3-dithiol-2-ylium-4-yl]phenolates around 235 nm, partially overlapped by the π - π * absorption band of aromatic ring. The known bathochromic effect induced by iodine substituents confirms the above; the absorption band placed at 255 nm clearly belongs to the contribution of quinoid structures to the ground state of 4a-4f.

Usually, the intramolecular charge-transfer UV-Vis absorption of such chromophores results from a charge transfer from the HOMO of the donor part to the LUMO of the acceptor part. For this reason, the position of the charge-transfer band should depend on solvent polarity [16–19], defined here as the overall solvation ability of a solvent. In comparison to the above studied unsubstituted (1,3-dithiol-2-ylium-4-yl)phenolates, iodo substituted phenolates

4a–4f should have a HOMO orbital of lower energy and therefore a larger solvatochromism.

From the common solvents of the $E_{\rm T}(30)$ solvent polarity scale [20–24], methanol was found as the highest polarity solvent, which ensures a sufficient concentration for UV-Vis measurements. In this solvent, a bathochromic effect was also recorded for the intramolecular charge transfer absorption band, 390 nm vs 375 nm, in unsubstituted mesoionic phenolates. In acetonitrile, a solvent of intermediate polarity, the UV-Vis spectra of phenolates 4 display a pronounced bathochromic shift of the charge-transfer band. The highest shift was recorded in THF, a low-polarity solvent. Thus, with increasing solvent polarity, a hypsochromic band shift of $\Delta \lambda = -44$ to -54 nm for representative phenolates **4a**, **4d**, and **4e** is observed, corresponding to a negative solvatochromism (Fig. 1, Table 1).

These results suggest a decrease in the ionization energy of the phenolate moiety because of electronic effects of substituents in both, aromatic ring and C-5

Fig. 1 UV-Vis absorption spectra of mesoionic phenolate **4a** in different solvents (— *Me*OH; ——— *Me*CN; … *Me*₂Cl₂; ——— *THF*)

Table 1 Long-wavelength, solvent dependent charge-transfer absorption maxima, $\lambda_{\text{max}}/\text{nm}$, of mesoionic phenolates **4a**, **4d**, and **4e**, measured at 25°C and at normal pressure

	7a	7d	7e
МеОН	394	371	360
MeCN	425	409	405
Me_2Cl_2	430	413	406
THF	438	425	409
$\Delta \lambda$ nm	-44	-54	-49

atom of the 1,3-dithiol-2-ylium ring. On going from mesoionic compound **4a** to **4d** and **4e**, the electronic density at C-5 changes significantly, with the experimentally observed hypsochromic charge-transfer band shift with increasing solvent polarity as a consequence.

The intramolecular nature of charge-transfer band of mesoionic phenolates **4** was proved by measurements at different concentrations. Although an important hypsochromic shift of the charge-transfer absorption band is induced by the iodine substituents on the donor part, better results may be achieved in systems with an extended positive charge delocalization. By replacing the secondary amine substituent with an appropriate one (*e.g.* aromatic units) the energy of LUMO orbital should increase do to the extended delocalization of positive charge. Therefore a larger solvatochromism should be recorded. The synthesis of such systems is under evaluation.

In conclusion, an improved method for cyclocondensation of some iodo-substituted phenacyl *N*,*N*-dial-kyldithiocarbamates is described. These compounds exhibit a larger negative solvatochromism than previously reported unsubstituted systems.

Experimental

Melting points were obtained on a Mel-Temp II apparatus. IR spectra were recorded on a Bruker Tensor 27 instrument. NMR spectra were recorded on a Bruker DPX-300 spectrometer. Chemical shifts are reported in ppm downfield from TMS. UV-Vis absorption spectra were recorded on a Varian Cary 100 Bio spectrophotometer. Elemental analyses (C, H, N, S) were conducted using the CE440 Elemental Analyser; their results were found to be in good agreement ($\pm 0.2\%$) with the calculated values.

2-Bromo-1-(2-hydroxy-3-iodo-5-methylphenyl)butan-1-one ($1\mathbf{c}$, $C_{11}H_{12}BrIO_2$)

To a solution of 10 g 1-(2-hydroxy-3-iodo-5-methylphenyl)butan-1-one (32 mmol) in 200 cm³ glacial acetic acid a solution of 1.7 cm³ bromine (32 mmol) in 10 cm³ glacial acetic acid was added under vigorous stirring. After decoloration the reaction mixture was poured into 300 cm³ water and the solid was filtered off, dried, and recrystallized from EtOH. Yellow crystals (8.5 g, 69%) were obtained. Mp 109–110°C; $^1\mathrm{H}$ NMR (CDCl3): $\delta=1.11$ (t, J=7.2 Hz, CH3), 1.95 (m, CH2), 2.29 (s, CH3), 5.23 (t, J=7.2 Hz, CH), 7.83 (d, J=2.1 Hz, Har-4), 7.90 (d, J=2.1 Hz, Har-6), 12.82 (s, OH) ppm; $^{13}\mathrm{C}$ NMR (CDCl3): $\delta=10.1$ (CH3), 20.3 (CH3), 25.9 (CH2), 57.1 (CH), 84.6 (CHar), 126.9 (CHar), 130.1 (CHar), 131.9 (CHar), 144.5 (CHar), 163.3 (CHar), 194.5 (C) ppm; IR (ATR): $\bar{\nu}=3438$, 2948, 1634, 1457, 1157, 862, 721, 679 cm $^{-1}$.

L. M. Birsa, L. V. Asaftei

2-(2-Hydroxy-3,5-diiodophenyl)-2-oxoethyl-N,N-dimethyldithiocarbamate (2a, C₁₁H₁₁I₂NO₂S₂). General Procedure To a solution of 2.34 g 2-bromo-1-(2-hydroxy-3,5-diiodophenyl)ethan-1-one (1a) (5 mmol) in 50 cm³ acetone a solution of 0.72 g sodium N,N-dimethyldithiocarbamate (5 mmol) in 10 cm³ water/acetone (1:1) was added. The reaction mixture was refluxed for 10 min, cooled and the obtained solid filtered, washed with water, and dried. Recrystallization from 45 cm³ dioxane gave yellow pale crystals, 1.8 g (72%) 2a; mp 193-194°C (dec); ¹H NMR (*DMSO*-d₆): $\delta = 3.33$ (s, CH₃), 3.43 (s, CH₃), 4.95 (s, CH₂), 8.24 (d, J = 2.3 Hz, H_{ar}-4), 8.42 (d, J = 2.3 Hz, H_{ar} -6), 12.46 (s, 1H, OH) ppm; ¹³C NMR (DMSO-d₆): $\delta = 44.1$ (CH₂), 48.8 (CH₃), 49.2 (CH₃), 81.3 (C_{ar}) , 87.7 (C_{ar}) , 121.8 (C_{ar}) , 138.3 (C_{ar}) , 153.3 (C_{ar}) , 161.1 (C_{ar}), 191.27 (C), 198.6 (C) ppm; IR (ATR): $\bar{\nu}$ = 3440, 2938, 1633, 1478, 1238, 1145, 979, 759, 696 cm⁻¹.

 $\begin{array}{l} \hbox{$I$-(2-Hydroxy-3,5-diiodophenyl)-I$-oxopropan-2-yl-N,N-dimethyldithiocarbamate $(\mathbf{2b},\, \mathbf{C}_{14}\mathbf{H}_{17}\mathbf{I}_{2}\mathbf{NO}_{2}\mathbf{S}_{2})$} \\ \hbox{Yield $88\%, pale yellow crystals; mp $128-129^{\circ}\mathbf{C}; $^{1}\mathbf{H}$ NMR $(DMSO-\mathbf{d}_{6})$: $\delta=1.24$ (t, $J=5.5$ Hz, 2CH_{3})$, 1.55 (d, $J=6.7$ Hz, CH_{3})$; 3.71 (q, $J=5.5$ Hz, CH_{2}-\mathbf{N})$, 4.01 (q, $J=5.5$ Hz, CH_{2}-\mathbf{N})$, 5.77 (q, $J=6.7$ Hz, CH)$, 8.20 (d, $J=2.3$ Hz, $H_{ar}-4)$, 8.31 (d, $J=2.3$ Hz, $H_{ar}-6)$, 12.80 (s, OH) ppm; $^{13}\mathbf{C}$ NMR $(DMSO-\mathbf{d}_{6})$: $\delta=12.1$ (CH_{3})$, 12.6 (CH_{3})$, 17.5 (3-C)$, 47.5 (CH_{2}-\mathbf{N})$, 50.8 (CH_{2}-\mathbf{N})$, 51.4 (2-C)$, 80.5 (3-C_{ar})$, 87.8 (5-C_{ar})$, 120.2 (1-C_{ar})$, 139.0 (6-C_{ar})$, 152.2 (4-C_{ar})$, 160.1 (2-C_{ar})$, 193.4 (C)$, 199.0 (C) ppm; IR (ATR)$: $\bar{\nu}=3445$, 2934, 1631, 1481, 1236, 1139, 985, 757, 689 cm$^{-1}$.} \label{eq:continuous}$

 $\begin{array}{l} \hbox{$I$-(2-Hydroxy-3,5-diiodophenyl)-1-oxapropan-2-yl-piperidine-1-carbodithioate} \ (\textbf{2c},\ C_{15}H_{17}I_{2}NO_{2}S_{2}) \\ \hbox{Yield 88\%, pale yellow crystals; mp 134–135°C; 1H NMR} \ (DMSO\text{-d}_{6})$: $\delta=1.54$ (d, $J=6.6$\,Hz, $CH_{3})$, 1.66 (m, 3CH_{2})$, 4.04 (m, 2CH_{2}\text{-N}), 5.78 (q, $J=6.7$\,Hz, $CH)$, 8.19 (d, $J=2.4$\,Hz, $H_{ar}\text{-}4)$, 8.31 (d, $J=2.4$\,Hz, $H_{ar}\text{-}6)$, 12.79 (s, $OH)$ ppm; 13C NMR ($DMSO\text{-d}_{6})$: $\delta=17.5$ (CH_{3})$, 23.5$ (CH_{2})$, 24.3$ (CH_{2})$, 24.5$ (CH_{2})$, 51.5$ (CH_{2})$, 52.5$ (CH_{2}\text{-N})$, 54.2$ (CH_{2}\text{-N})$, 82.0$ (Car)$, 89.4$ (Car)$, 125.5$ (Car)$, 138.9$ (Car)$, 151.6$ (Car)$, 160.7$ (Car)$, 193.0$ (C)$, 198.2$ (C) ppm; IR (ATR)$: $\bar{\nu}=3446$, 2935$, 1634$, 1448$, 1232$, 1147$, 972$, 783$, 695 cm$^{-1}$. } \label{eq:carbon}$

1-(2-Hydroxy-3,5-diiodophenyl)-1-oxopropan-2-yl-morpholine-4-carbodithioate (**2d**, C₁₄H₁₅I₂NO₃S₂) Yield 72%, pale yellow crystals; mp 173–174°C; ¹H NMR (*DMSO*-d₆): δ = 1.54 (d, J = 6.7 Hz, CH₃), 3.73 (m, 2CH₂), 4.08 (m, 2CH₂), 5.78 (q, J = 6.7 Hz, CH), 8.19 (d, J = 2.3 Hz, H_{ar}), 8.32 (d, J = 2.3 Hz, H_{ar}), 12.68 (s, OH) ppm; ¹³C NMR (*DMSO*-d₆): δ = 17.3 (CH₃), 51.1 (CH₂), 51.9 (CH₂–N), 52.0 (CH₂–N), 66.5 (CH₂–O), 66.5 (CH₂–O), 81.5 (C_{ar}), 90.3 (C_{ar}), 122.2 (C_{ar}), 140.1 (C_{ar}), 152.1 (C_{ar}), 162.1 (C_{ar}), 191.8 (C), 198.4 (C) ppm. IR (ATR): $\bar{\nu}$ = 3446, 2939, 1632, 1425, 1231, 1151, 982, 781, 710 cm⁻¹.

1-(2-Hydroxy-3-iodo-5-methylphenyl)-1-oxobutan-2-yl-piperidine-1-carbodithioate (2e, $C_{17}H_{22}INO_2S_2$) Yield 68%, yellow pale crystals; mp 182–183°C; ¹H NMR (*DMSO*-d₆): δ = 0.98 (t, J = 7.3 Hz, CH₃), 1.68 (m, 3CH₂), 2.01 (m, CH₂), 2.26 (s, CH₃), 4.06 (m, 2CH₂–N), 5.82 (t, J=7 Hz, CH), 7.80 (d, J=2.2 Hz, H_{ar}), 7.86 (d, J=2.2 Hz, H_{ar}), 12.80 (s, OH) ppm; ¹³C NMR (*DMSO*-d₆): δ =11.9 (CH₃), 20.4 (CH₃), 23.2 (CH₂), 24.3 (CH₂), 24.5 (CH₂), 24.6 (CH₂), 52.3 (CH₂–N), 54.1 (CH₂–N), 56.6 (2-C), 86.3 (3-C_{ar}), 118.2 (C_{ar}), 130.2 (C_{ar}), 130.8 (C_{ar}), 146.8 (C_{ar}), 159.4 (C_{ar}), 194.4 (C), 203.1 (C) ppm. IR (ATR): $\bar{\nu}$ = 3452, 2940, 1634, 1434, 1229, 1152, 975, 786, 709 cm⁻¹.

 $\begin{array}{l} \textit{1-(2-Hydroxy-3-iodo-5-methylphenyl)-1-oxobutan-2-yl-morpholine-4-carbodithioate} & \textbf{(2f, C}_{16}\textbf{H}_{20}\textbf{INO}_{3}\textbf{S}_{2}) \\ \textbf{Yield 70\%, yellow pale crystalls; mp 146−147°C; }^{1}\textbf{H NMR} & \textbf{(DMSO-d}_{6}): δ = 1.01 \text{ (t, } \textit{J} = 7.3 \text{ Hz, CH}_{3}), 2.01 \text{ (m, CH}_{2}), 2.29 \\ \textbf{(s, CH}_{3}), 3.76 \text{ (m, 2CH}_{2}), 4.13 \text{ (m, CH}_{2}), 5.84 \text{ (t, } \textit{J} = 7 \text{ Hz, CH}), 7.80 \text{ (d, } \textit{J} = 2.1 \text{ Hz, H}_{ar}), 7.86 \text{ (d, } \textit{J} = 2.1 \text{ Hz, H}_{ar}), 12.71 \\ \textbf{(s, OH) ppm; }^{13}\textbf{C NMR} & \textbf{(DMSO-d}_{6}): δ = 11.8 \text{ (CH}_{3}), 20.4 \\ \textbf{(CH}_{3}), 24.6 \text{ (CH}_{2}), 50.9 \text{ (CH}_{2} - \textbf{N)}, 51.8 \text{ (CH}_{2} - \textbf{N)}, 56.4 \text{ (CH}_{2}), 66.2 \text{ (CH}_{2} - \textbf{O)}, 66.4 \text{ (CH}_{2} - \textbf{O)}, 86.4 \text{ (C}_{ar}), 118.2 \text{ (C}_{ar}), 130.5 \\ \textbf{(C}_{ar}), 130.9 \text{ (C}_{ar}), 146.8 \text{ (C}_{ar}), 159.5 \text{ (C}_{ar}), 194.2 \text{ (C)}, 203.0 \\ \textbf{(C) ppm; IR (ATR): } \bar{\nu} = 3448, 2940, 1634, 1429, 1231, 1150, 968, 786, 695 \text{ cm}^{-1}. \end{aligned}$

 $\begin{array}{l} \hbox{2-(Dimethylamino)-4-(2-Hydroxy-3,5-diiodophenyl)-1,3-dithiol-2-ylium\ perchlorate\ (\textbf{3a},\ C_{11}H_{10}CII_2NO_5S_2).} \\ \hbox{General\ Procedure} \end{array}$

To a mixture of $3\,\mathrm{cm}^3$ $P_2O_5-CH_3SO_3H$ (1:10) 1.01 g dithiocarbamate **2a** (2 mmol) were added in several portions. The reaction mixture was stirred for 30 min at room temperature. To the homogeneous mixture $0.5\,\mathrm{cm}^3$ 70% HClO₄ were added and the crude **3a** was precipitated with $50\,\mathrm{cm}^3$ AcOMe. This was filtered off, dried, and recrystallized from $100\,\mathrm{cm}^3$ EtOH to give the pure product as white crystals, $1.08\,\mathrm{g}$ (92%). Mp $209-210^\circ\mathrm{C}$ (dec); $^1\mathrm{H}$ NMR ($DMSO-\mathrm{d_6}$): 3.51 (s, CH₃), 3.53 (s, CH₃), 7.88 (d, $J=1.8\,\mathrm{Hz}$, H_{ar}), 8.02 (s, CH), 8.12 (d, $J=1.8\,\mathrm{Hz}$, H_{ar}), 10.42 (s, OH) ppm; $^{13}\mathrm{C}$ NMR ($DMSO-\mathrm{d_6}$): $\delta=47.3$ (CH₃), 47.7 (CH₃), 85.5 (C_{ar}), 92.8 (C_{ar}), 121.6 (CH), 122.7 (C_{ar}), 132.9 (C), 137.1 (C_{ar}), 147.9 (C_{ar}), 153.5 (C_{ar}), 186.9 (C) ppm; IR (ATR): $\bar{\nu}=3441$, 2943, 1577, 1448, 1273, 1087 (b), 846, 623 cm $^{-1}$.

Compounds 3b-3f were obtained using the same experimental conditions.

 $\begin{array}{l} 2\text{-}(Diethylamino)\text{-}4\text{-}(2\text{-}hydroxy\text{-}3,5\text{-}diiodophenyl)\text{-}5\text{-}methyl-}\\ 1\text{,}3\text{-}dithiol\text{-}2\text{-}ylium\ perchlorate}\ (\textbf{3b},\ C_{14}H_{16}\text{CII}_2\text{NO}_5\text{S}_2)\\ \text{Yield\ 84\%,\ white\ crystals;\ mp\ 159\text{-}160^{\circ}\text{C;}\ ^{1}\text{H\ NMR\ }(DMSO\text{-}d_6)\text{:}\ \delta=1.32\ (t,\ J=7.3\ Hz,\ CH_3),\ 1.35\ (t,\ J=7.0\ Hz,\ CH_3),\ 2.23\ (s,\ CH_3),\ 3.82\ (q,\ J=7.3\ Hz,\ CH_2),\ 3.87\ (q,\ J=7.0\ Hz,\ CH_2),\ 7.64\ (d,\ J=1.9\ Hz,\ H_{ar}),\ 8.14\ (d,\ J=1.9\ Hz,\ H_{ar}),\ 10.24\ (s,\ OH)\ ppm;\ ^{13}\text{C\ NMR\ }(DMSO\text{-}d_6)\text{:}\ \delta=10.8\ (CH_3),\ 10.8\ (CH_3),\ 15.2\ (CH_3),\ 53.6\ (CH_2),\ 53.7\ (CH_2),\ 83.2\ (C_{ar}),\ 91.33\ (C_{ar}),\ 118.8\ (C),\ 127.2\ (C_{ar}),\ 134.3\ (C),\ 139.6\ (C_{ar}),\ 148.4\ (C_{ar}),\ 155.6\ (C_{ar}),\ 184.3\ (C)\ ppm;\ IR\ (ATR)\text{:}\ \bar{\nu}=3345,\ 2998,\ 1542,\ 1450,\ 1095\ (b),\ 851,\ 613\ cm^{-1}. \end{array}$

4-(2-Hydroxy-3,5-diiodophenyl)-5-methyl-2-(piperidin-1-yl)-1,3-dithiol-2-ylium perchlorate (3c, $C_{15}H_{16}CII_2NO_5S_2$) Yield 85%, white crystals; mp 190–191°C; 1H NMR (*DMSO*-d₆): δ = 1.67 (m, CH₂), 1.82 (m, 2CH₂), 2.24 (s, CH₃), 3.83

(m, 2CH₂), 7.62 (d, J = 2.0 Hz, H_{ar}), 8.16 (d, J = 2.0 Hz, H_{ar}), 10.32 (s, OH) ppm; 13 C NMR (DMSO-d₆): 15.3 (CH₃), 21.6 (CH₂), 24.9 (CH₂), 56.5 (CH₂–N), 57.1 (CH₂–N), 83.9 (C_{ar}), 91.2 (C_{ar}), 118.9 (C), 126.7 (C_{ar}), 134.0 (C), 139.7 (C_{ar}), 148.5 (C_{ar}), 155.4 (C_{ar}), 184.8 (C) ppm; IR (ATR): $\bar{\nu}$ = 3339, 1545, 1451, 1248, 1088 (b), 885, 624 cm⁻¹.

4-(2-Hydroxy-3,5-diiodophenyl)-5-methyl-2-(morpholin-4-yl)-1,3-dithiol-2-ylium perchlorate (3d, C₁₄H₁₄CII₂NO₆S₂) Yield 95%, white crystals; mp 216–217°C; ¹H NMR (*DMSO*-d₆): δ = 2.23 (s, CH₃), 3.42 (m, 2CH₂N), 3.86 (m, 2CH₂O), 7.63 (d, J = 2.1 Hz, H_{ar}), 8.17 (d, J = 2.1 Hz, H_{ar}), 10.28 (s, OH) ppm; ¹³C NMR (*DMSO*-d₆): δ = 15.3 (CH₃), 54.2 (CH₂-N), 54.3 (CH₂-N), 65.0 (CH₂-O), 84.0 (C_{ar}), 91.3 (C_{ar}), 119.1 (C), 126.5 (C_{ar}), 134.1 (C), 139.8 (C_{ar}), 148.6 (C_{ar}), 155.3 (C_{ar}), 186.0 (C) ppm; IR (ATR): $\bar{\nu}$ = 3252, 1549, 1455, 1289, 1105 (b), 884, 623 cm⁻¹.

4-Ethyl-5-(2-hydroxy-3-iodo-5-methylphenyl)-2-(piperidin-1-yl)-1,3-dithiol-2-ylium perchlorate (**3e**, C₁₇H₂₁CIINO₅S₂) Yield 83%, white crystals; mp 197–198°C; ¹H NMR (CDCl₃): δ = 1.25 (t, J = 7.6 Hz, CH₃), 1.80 (m, CH₂), 1.94 (m, 2CH₂), 2.26 (s, CH₃), 2.64 (q, J = 7.6 Hz, CH₂), 3.85 (m, 2CH₂), 6.28 (s, OH), 7.02 (d, J = 2.0 Hz, H_{ar}), 7.64 (d, J = 2.0 Hz, H_{ar}) ppm; ¹³C NMR (CDCl₃): δ = 14.6 (CH₃), 19.8 (CH₃), 21.5 (CH₂), 23.3 (CH₂), 24.7 (CH₂), 56.4 (CH₂–N), 56.6 (CH₂–N), 77.2 (C_{ar}), 86.7 (C_{ar}), 114.3 (C), 126.7 (C_{ar}), 132.2 (C_{ar}), 132.2 (C), 142.0 (C_{ar}), 151.5 (C_{ar}), 185.4 (C) ppm; IR (ATR): $\bar{\nu}$ = 3381, 2951, 2874, 1525, 1444, 1272, 1091 (b), 863, 621 cm⁻¹.

4-Ethyl-5-(2-hydroxy-3-iodo-5-methylphenyl)-2-(morpholin-4-yl)-1,3-dithiol-2-ylium perchlorate (**3f**, C₁₆H₁₉ClINO₆S₂) Yield 94%, white crystals; mp 187–188°C; ¹H NMR (*DMSO*-d₆): δ = 1.25 (t, J = 7.5 Hz, CH₃), 2.27 (s, CH₃), 2.64 (q, J = 7.5 Hz, CH₂), 3.44 (m, 2CH₂N), 3.87 (m, 2CH₂O), 7.57 (d, J = 2.0 Hz, H_{ar}), 8.09 (d, J = 2.0 Hz, H_{ar}), 10.33 (s, OH) ppm; ¹³C NMR (*DMSO*-d₆): δ = 14.7 (CH₃), 19.9 (CH₃), 21.5 (CH₂), 54.6 (CH₂–N), 55.0 (CH₂–N), 65.2 (CH₂–O), 84.1 (C_{ar}), 91.5 (C_{ar}), 119.2 (C), 126.6 (C_{ar}), 134.5 (C), 139.8 (C_{ar}), 148.75 (C_{ar}), 155.8 (C_{ar}), 186.5 (C) ppm; IR (ATR): $\bar{\nu}$ = 3375, 2942, 1532, 1450, 1268, 1098 (b), 859, 630 cm⁻¹.

2-[2-(Dimethylamino)-1,3-dithiol-2-ylium-4-yl]-4,6-diiodophenolate (4a, C₁₁H₉I₂NOS₂). General Procedure To a saturated sodium hydrogencarbonate solution 0.59 g perchlorate 3a (1 mmol) was added. Carbon dioxide evolved and the reaction mixture became yellow. After 2 h under vigorous stirring at room temperature, the yellow solid was filtered off, washed with water, and dried. Recrystallization from *DMF/AcOMe* afforded the pure product as yellow crystals, 0.49 g (100%). Mp 208–209°C (dec); ¹H NMR (*DMSO*-d₆): δ = 3.50 (s, CH₃), 3.52 (s, CH₃), 7.67 (d, J = 1.9 Hz, H_{ar}), 8.00 (s, CH), 8.10 (d, J = 1.9 Hz, H_{ar}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 47.1 (CH₃), 47.5 (CH₃), 85.3 (C_{ar}), 92.6 (C_{ar}), 121.3 (C), 122.4 (C_{ar}), 132.8 (C), 137.4 (C_{ar}), 147.2 (C_{ar}), 153.1 (C_{ar}), 186.3 (C) ppm; IR (ATR): $\bar{\nu}$ = 3432, 2926, 1551, 1439, 1267, 1062, 863 cm⁻¹.

Compounds **4b–4f** were obtained in the same experimental conditions.

2-[2-(Diethylamino)-5-methyl-1,3-dithiolium-4-yl]-4,6-diiodophenolate (**4b**, $C_{14}H_{15}I_{2}NOS_{2}$)

Yield 100%, yellow crystals; mp 192–193°C (dec); ¹H NMR (*DMSO*-d₆): δ = 1.31 (t, J = 7.2 Hz, CH₃), 1.34 (t, J = 7.2 Hz, CH₃), 2.23 (s, CH₃-5), 3.82 (q, J = 7.2 Hz, CH₂), 3.87 (q, J = 7.2 Hz, CH₂), 7.62 (d, J = 1.9 Hz, H_{ar}), 8.12 (d, J = 1.9 Hz, H_{ar}) ppm; ¹³C NMR (*DMSO*-d₆): 10.35(CH₃), 10.4 (CH₃), 15.3 (CH₃), 53.8 (CH₂), 53.9 (CH₂), 83.3 (C_{ar}), 91.2 (C_{ar}), 118.3 (C), 127.1 (C_{ar}), 134.5 (C), 139.8 (C_{ar}), 148.6 (C_{ar}), 155.6 (C_{ar}), 184.0 (C) ppm; IR (ATR): $\bar{\nu}$ = 3410, 2943, 1550, 1456, 1259, 1132 cm⁻¹.

4,6-Diiodo-2-[5-methyl-2-(piperidin-1-yl)-1,3-dithiol-2-ylium-4-yl]phenolate ($\mathbf{4c}$, $C_{15}H_{15}I_2NOS_2$)

Yield 100%, yellow crystals; mp 194–195°C (dec); ¹H NMR (*DMSO*-d₆): δ = 1.76 (m, 3CH₂), 2.23 (s, CH₃), 3.85 (m, 2CH₂), 7.60 (d, J = 2.0 Hz, H_{ar}), 8.15 (d, J = 2.0 Hz, H_{ar}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 15.2 (CH₃), 21.3 (CH₂), 24.6 (CH₂), 56.3 (CH₂–N), 57.0 (CH₂–N), 83.3 (C_{ar}), 91.2 (C_{ar}), 118.7 (C), 126.3 (C_{ar}), 133.9 (C), 139.2 (C_{ar}), 148.6 (C_{ar}), 155.3 (C_{ar}), 184.3 (C) ppm; IR (ATR): $\bar{\nu}$ = 3407, 2951, 2865, 1465, 1259, 1139, 1023, 881 cm⁻¹.

4,6-Diiodo-2-[5-methyl-2-(morpholin-4-yl)-1,3-dithiol-2-ylium-4-yl]phenolate ($\mathbf{4d}$, $C_{14}H_{13}I_{5}NO_{2}S_{2}$)

Yield 100%, yellow crystals; mp 184–185°C (dec); ^1H NMR (DMSO-d₆): $\delta = 2.22$ (s, CH₃), 3.44 (m, 2CH₂N), 3.84 (m, 2CH₂O), 7.61 (d, $J = 2.0\,\text{Hz}$, H_{ar}), 8.15 (d, $J = 2.0\,\text{Hz}$, H_{ar}) ppm; ^{13}C NMR (DMSO-d₆): $\delta = 15.2$ (CH₃), 54.3 (CH₂–N), 65.5 (CH₂–O), 83.8 (C_{ar}), 91.3 (C_{ar}), 119.1 (C), 126.3 (C_{ar}), 134.6 (C), 139.3 (C_{ar}), 148.9 (C_{ar}), 155.3 (C_{ar}), 186.2 (C) ppm; IR (ATR): $\bar{\nu} = 3407$, 2926, 1553, 1439, 1268, 1121, 1044, 886 cm $^{-1}$.

2-[5-Ethyl-2-(piperidin-1-yl)-1,3-dithiol-2-ylium-4-yl]-6-iodo-4-methylphenolate ($\mathbf{4e},$ $C_{17}H_{20}INOS_2$)

Yield 100%, yellow crystals; mp 173–174°C (dec); ¹H NMR (CDCl₃): 1.22 (t, J=7.5 Hz, CH₃), 1.76 (m, CH₂), 1.87 (m, 2CH₂), 2.24 (s, CH₃), 2.69 (q, J=7.5 Hz, CH₂), 3.67 (m, CH₂), 3.73 (m, CH₂), 6.94 (d, J=1.6 Hz, H_{ar}), 7.58 (d, J=1.6 Hz, H_{ar}) ppm; ¹³C NMR (CDCl₃): δ =14.8 (CH₃), 19.8 (CH₃), 21.7 (CH₂), 23.6 (CH₂), 24.9 (CH₂), 56.0 (CH₂–N), 77.4 (C_{ar}), 90.6 (C_{ar}), 115.9 (C), 128.5 (C_{ar}), 131.3 (C_{ar}), 137.8 (C), 141.4 (C_{ar}), 155.9 (C_{ar}), 185.4 (C) ppm; IR (ATR): $\bar{\nu}$ =3415, 2951, 2848, 1534, 1465, 1259, 1095, 863 cm⁻¹.

 $\begin{array}{l} 2\text{-}[5\text{-}Ethyl\text{-}2\text{-}(morpholin\text{-}4\text{-}yl)\text{-}1\text{,}3\text{-}dithiol\text{-}2\text{-}ylium\text{-}4\text{-}yl]\text{-}6\text{-}iodo\text{-}4\text{-}methylphenolate} \ (\textbf{4f},\ C_{16}H_{18}INO_{2}S_{2}) \end{array}$

Yield 100%, yellow crystals; mp 87–88°C; ¹H NMR (*DMSO*-d₆): δ = 1.23 (t, J = 7.6 Hz, CH₃), 2.25 (s, CH₃), 2.63 (q, J = 7.6 Hz, CH₂), 3.47 (m, 2CH₂N), 3.92 (m, 2CH₂O), 7.51 (d, J = 1.8 Hz, H_{ar}), 8.05 (d, J = 1.8 Hz, H_{ar}) ppm; ¹³C NMR (*DMSO*-d₆): δ = 14.2 (CH₃), 19.7 (CH₃), 21.3 (CH₂), 54.8 (CH₂–N), 65.0 (CH₂–O), 84.0 (C_{ar}), 91.9 (C_{ar}), 119.3 (C), 126.3 (C_{ar}), 134.0 (C), 139.3 (C_{ar}), 148.0 (C_{ar}), 156.0 (C_{ar}),

185.3 (C) ppm; IR (ATR): $\bar{\nu} = 3410$, 2946, 1528, 1458, 1263, 1075, 871 cm⁻¹.

References

- Laage D, Thompson WH, Blanchard-Desce M, Hynes JT (2003) J Phys Chem A 107:6032
- 2. Fayed TA (2004) Colloids Surf A 236:171
- 3. Yang X, Liu WH, Jin WJ, Shen GL, Yu RQ (1999) Spectrochim Acta, Part A 55:2719
- 4. Bryce MR (1999) Adv Mater 11:11
- Goldenberg LM, Becker JY, Levi OPT, Khodorkovsky VYu, Shapiro LM, Bryce MR, Cresswell JP, Petty MC (1997) J Mater Chem 7:901
- Simonsen KB, Zong K, Rogers RD, Cava MP, Becher J (1997) J Org Chem 62:679
- Masternak A, Wenska G, Milecki J, Skalski B, Franzen S (2005) J Phys Chem A 109:759
- 8. Birsa ML, Ganju D (2003) J Phys Org Chem 16:207
- 9. Patil BR, Bhusare SR, Pawar RP, Vibhute YB (2005) Tetrahedron Lett 46:7179
- Leaver D, Robertson WAH, McKinnon DM (1962) J Chem Soc:5104
- 11. Campaigne E, Jacobsen NW (1964) J Org Chem 29:1703

- 12. Takamizawa A, Hirai K (1969) Chem Pharm Bull 17:1924
- De Oliveira MB, Miller J, Pereira AB, Galembeck SE, De Moura GLC, Simas AM (1996) Phosphorus Sulfur Silicon Relat Elem 108:75
- 14. Simas AM, Miller J, De Athayde Filho PF (1998) Can J Chem 76:869
- 15. De Athayde Filho PF, Miller J, Simas AM (2000) Synthesis:1565
- 16. Dimroth K, Reichardt C, Siepmann Th, Bohlmann F (1963) Justus Liebigs Ann Chem 661:1
- 17. Reichardt C, Schafer G (1995) Liebigs Ann Chem: 1579
- 18. Reichardt C (1992) Chem Soc Rev 21:147
- 19. Muller P (1994) Pure Appl Chem 66:1077
- 20. Reichardt C (1994) Chem Rev 94:2319
- 21. Reichardt C, Harbusch-Gornert E (1983) Liebigs Ann Chem:721
- Reichardt C (1988) Solvents and Solvent Effects in Organic Chemistry (2nd edn) VCH: Weinheim, chapt 7, p 339
- 23. Reichardt C, Che D, Heckenkemper G, Schafer G (2001) Eur J Org Chem:2343
- 24. Reichardt C, Eschner M, Schafer G (2001) J Phys Org Chem 14:737